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We consider the behaviour of a gravity current in a porous medium when the
horizontal surface along which it spreads is punctuated either by narrow fractures
or by permeable regions of limited extent. We derive steady-state solutions for the
current, and show that these form part of a long-time asymptotic description which
may also include a self-similar ‘leakage current’ propagating beyond the fractured
region with a length proportional to t1/2. We discuss the conditions under which a
current can be completely trapped by a permeable region or a series of fractures.

1. Introduction
There are many geological situations in which fluid spreads through a layered

porous medium. Important examples of such systems include aquifers and oil or
geothermal reservoirs (see e.g. Bear 1972), and the flows may be natural or artificial:
examples of the latter include waterflooding in an oil reservoir (Latil 1980) and the
sequestration of carbon dioxide or other pollutants in saline aquifers (Bachu 2000;
Nordbotten, Celia & Bachu 2004; Bickle et al. 2007). In many instances, the fluid
spreads laterally along an impermeable or almost impermeable layer in the medium,
driven by the buoyancy contrast between it and the ambient fluid: the resulting flows
are generally known as gravity currents. The theory of such flows is well developed,
and a particularly useful technique in their investigation has been to develop models,
in the form of nonlinear diffusion equations, which admit self-similar solutions. These
self-similar solutions then describe the asymptotic behaviour of the flow as it spreads
far from its initial injection point or beyond its original spatial distribution (see e.g.
Barenblatt 2003, chapter 2).

When the layer along which the fluid spreads is not quite impermeable, the current
may lose mass by drainage through this layer, and in this situation the usual self-
similar solutions are no longer valid. Indeed, the current may exhibit behaviour such as
spatially limited spreading which cannot be described by similarity solutions. The first
study of how this drainage might affect the spreading of a gravity current in a porous
medium was carried out by Pritchard, Woods & Hogg (2001), hereafter PWH01,
who investigated drainage, driven by hydrostatic pressure, through a thin, spatially
uniform underlying layer. For releases of a constant volume of fluid, PWH01 found
a class of exact solutions which were not self-similar but which were attracting under
most conditions; when fluid is injected at a constant rate, the attracting solutions of
the system are steady solutions characterized by a local balance between drainage
and the supplied flux. Almost simultaneously with PWH01, Acton, Huppert &
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Worster (2001) obtained analogous results for a viscous gravity current spreading
over and draining into a porous medium. The model of PWH01 was later extended by
Pritchard & Hogg (2002), who considered a more general model for the drainage rate,
and by King & Woods (2003), who developed a class of ‘dipole’ solutions for currents
which drain both vertically through an underlying layer and backwards through the
point of injection. A more distant but interesting parallel is provided by models of
currents which lose mass through capillary retention (Barenblatt 2003, chapter 3), or
through evaporation (Woods 1998).

Almost all the theoretical work on the effect of drainage on gravity currents has
treated a spatially distributed mass loss term. However, this is not a good model
for all geological systems. In many formations, we may expect the low-permeability
layers to be inhomogeneous in thickness and composition, and in the extreme case,
they may be discontinuous or fractured. When a current spreads along a fractured
substrate, its spreading will be controlled by the rate at which fluid is lost through
the individual fractures, the spatial scale of which may be much less than that of
the current itself. This provides a natural complement to the case of distributed
drainage considered by PWH01 and others, and it is this situation which we consider
in the current study. Our emphasis will be on determining when a current can
be completely trapped by the fractured substrate and prevented from propagating
further, and if it can propagate beyond the fractured region, how its propagation is
affected.

In § 2 we describe the model which we will employ. In § 3 we describe the flow which
results when the current encounters a single isolated fracture. In § 4 we consider the
effect of a series of discrete fractures or a continuous but finite permeable region in
the substrate. We summarize our results and draw some conclusions in § 5.

2. Description of the discrete-fracture model
We consider a layer of buoyant fluid spreading unidirectionally in a deep porous

layer, along a horizontal caprock. The caprock is taken to be generally impermeable,
but to contain occasional line fractures perpendicular to the direction of flow. These
line fractures are narrow compared to the streamwise length scale of the flow, and
so act in a two-dimensional model as point sinks of fluid; we will discuss this ‘point
sink’ assumption below. Throughout, we will make the shallow-flow approximation
that, except in the immediate vicinity of a fracture, the horizontal length scale of the
current is much greater than its depth. This allows us to treat the pressure in the
current as hydrostatic and the velocity as horizontal (Huppert & Woods 1995).

Away from the fractures, the fluid spreads under gravity according to

∂ĥ

∂t̂
= β̂

∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
, where β̂ =

K̂ĝ�ρ̂

µ̂φ
(2.1)

(see e.g. Huppert & Woods 1995). Here ĥ(x̂, t̂) is the fluid depth, φ and K̂ are the
porosity and permeability of the porous layer, �ρ̂ > 0 is the density contrast between
the injectate and the ambient fluid and µ̂ is the viscosity of the injectate. (Note
that the parameter β̂ has the dimensions of velocity: throughout, we will denote
dimensional variables by a caret, while dimensionless variables are unadorned.)

We take the ith fracture to have streamwise width Ŵi , porosity φi and effective
permeability K̂i; the caprock layer is presumed to have thickness b̂, and we assume
that it is sufficiently thin that the fracture saturates effectively instantaneously. The
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rate of loss of volume per unit width from the current is then given by

q̂ i = v̂iŴi ≡ λ̂i ĥ(x̂i), where v̂i =
K̂i

µ̂

�ρ̂ĝĥ

b̂
and λ̂i =

K̂i

µ̂

�ρ̂ĝŴi

b̂
. (2.2)

(The derivation and validity of this drainage rate have been discussed by PWH01
and by Pritchard & Hogg 2002.) The conservation of fluid volume therefore gives[

ĥ
∂ĥ

∂x̂

]x̂i+

x̂i−

= λ̂i ĥ(x̂i , t̂) at each point x̂ = x̂i . (2.3)

We will consider currents which are fed at x̂ = 0 by a constant volume flux per unit
width q̂ , so

−β̂ĥ
∂ĥ

∂x̂
= q̂ at x̂ = 0. (2.4)

2.1. Validity of the point sink model

The key assumption of the ‘point sink’ model is that the shallow-flow assumptions are
violated (i.e. two-dimensional flow occurs) only near the fracture, in a region which is
of small horizontal extent relative to the current. Such local violations are common
in models of viscous and porous-medium gravity currents, near either the point of
injection (e.g. Lyle et al. 2005) or the flow front (e.g. Huppert 1982), and these
examples suggest that local violation does not invalidate the rest of the solution. We
may therefore be reasonably confident of our approach as long as the two-dimensional
flow region is indeed small.

From the continuity equation, we deduce that if the two-dimensional flow induced
by a fracture varies over a length scale L̂, we must have û/L̂ ∼ v̂/ĥ. Again by

continuity, we may estimate v̂ by the drainage velocity in the fracture, v̂ ∼ v̂i = λ̂i ĥ/Ŵi;
meanwhile we may estimate û by dividing the flux arriving at the fracture by the
depth, û ∼ q̂ i/ĥ. Hence

q̂ i

ĥL̂
∼ λ̂i ĥ

Ŵi ĥ
, i.e. L̂ ∼ q̂i

ĥ

Ŵi

λ̂i

. (2.5)

We will see below that the system favours states in which ĥ(xi) ∼ q̂ i/λ̂i , and so we have
L̂ ∼ Ŵi . Therefore, as long as the fractures themselves are narrow on the length scale
x̂1 of the current, it is consistent to treat them as ‘point sinks’, except possibly during a
brief transient as the flow front first reaches a fracture: our emphasis will be on the
longer-term dynamics, so we will neglect the details of this transient.

2.2. Non-dimensionalization

We define

x =
x̂

x̂1

, xi =
x̂i

x̂1

, h= ĥ

(
β̂

x̂1q̂

)1/2

, t = t̂
(q̂β̂)1/2

x̂
3/2
1

and λi = λ̂i

x̂
3/2
1

(q̂β̂)1/2
, (2.6)

to eliminate q̂ , β̂ and x̂1 and obtain the governing equation

∂h

∂t
=

∂

∂x

(
h

∂h

∂x

)
for x �= xi, (2.7)
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together with the flux conditions at each sink[
h

∂h

∂x

]xi+

xi−

= λih(xi, t), i.e.

[
∂h

∂x

]xi+

xi−

= λi (2.8)

and the boundary condition h∂h/∂x = −1 at x = 0.
The sinks are located at xi for i = 1, 2, . . . , with x1 = 1. We will investigate how

the spacing and strength of these sinks affects the spreading of the current, and in
particular the possibilities for both steady-state and time-dependent behaviour.

3. A single fracture
We start by considering the behaviour of the current when there is a single fracture

in its path. We will first look for steady-state solutions in which the current reaches
the fracture and drains completely into it; we will then investigate the time-dependent
problem numerically and analytically.

3.1. Steady-state solutions

In general, for a steady current carrying a constant uniform flux q , the current profile
between sinks and sources obeys the equation

h
dh

dx
= −q, with the general solution h(x) = (A − 2qx)1/2 , (3.1)

where A is a constant of integration to be determined. Steady solutions in the presence
of multiple sinks and sources may be constructed by piecing together sections with
this form, setting A and q in each region to satisfy the boundary and continuity
conditions.

In particular, when there is a single sink of strength λ1 located at x = 1, the steady
state must satisfy λ1 (A − 2)1/2 = 1, and thus

A= 2 +
1

λ2
1

, i.e. h(x) =

(
2 +

1

λ2
1

− 2x

)1/2

. (3.2)

Although the gradient and depth of the flow remain finite as x → 1−, if we
postulate that the region beyond the fracture is ‘dry’ of intruding fluid then h must be
discontinuous at the fracture. Such discontinuous profiles are unstable, because a slight
perturbation leads to a high but finite gradient rather than a perfect discontinuity,
and thus to flow which tends to eliminate the high-gradient region. This means that
the steady-state solution presented above cannot quite be realized; however, as we
will see below, it remains significant as an attractor of the time-dependent flow.

3.2. Spreading before the first fracture

Before the injectate reaches the first fracture, the attracting solution to (2.7) is the
classic similarity solution with constant input flux (Huppert & Woods 1995). This
solution is not available in closed form, but it may be written as

h(x, t) = t1/3H (η), where η =
x

t2/3
and

1

3
H − 2

3
η
dH

dη
=

d

dη

(
H

dH

dη

)
. (3.3)

The boundary conditions are that HdH/dη = −1 at η =0 while H =0 at some position
η = η0; the latter then requires that dH/dη = −2η0/3 at η = η0, and it is easy to use
this as the initial condition for a numerical integration, and obtain η0 by shooting.
The shooting process gives η0 ≈ 1.4819 (and consequently H (0) ≈ 1.296); we note that



Gravity currents over fractured substrates in a porous medium 419

0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7

(a) (b)

h(x, t)

x x

Figure 1. Similarity solutions h(x, t) plotted at t = 0.5 to 10 at intervals of 0.5, with (a)
constant flux q =1 at x = 0 and (b) decreasing flux q = t−1/2 at x = 0.

this means that the current reaches the first fracture at t = t1 = (1/η0)
3/2 ≈ 0.554. The

solution is plotted in figure 1(a), alongside a similarity solution for a decaying input
flux, which we will require later.

3.3. The quasi-steady ‘leaking’ state

We now consider flow with a single fracture of strength λ1 located at x = 1. The
unique steady-state solution in this case is given by equation (3.2) but, as noted
above, we may expect this solution to be unstable; since no other steady state is
available to attract the system, it is not obvious in advance what will occur. To
investigate the behaviour of the system, the governing equations (2.7) and (2.8) were
integrated numerically using the method described in Appendix (A).

Typical results are shown in figure 2, which illustrates the long-term evolution of
the current for high and for low values of λ1. The overall pattern is the same in each
case. After the current reaches the fracture, it adjusts in the region x < 1 towards
the steady-state solution (3.2). The depth discontinuity at the fracture, however, is
unsustainable, and ahead of the fracture a ‘leakage current’ develops. The leakage
current is fed by the small ‘leakage flux’ of fluid which crosses the fracture; this fluid
is able to cross the fracture because h(1, t) is somewhat smaller than the steady-state
depth 1/λ1, so the hydrostatically driven drainage rate is lower than the supplied flux.
The leakage flux decreases gradually with time, as the depth at the fracture increases
towards 1/λ1.

The further details of the current’s evolution depend on λ1. For a high value of λ1

figures (2a and 2b), the flow in x < 1 rapidly adjusts to be very close to the steady state
given by (3.2); beyond x > 1 the leakage current develops, fed by a small leakage flux,
and spreads in an approximately self-similar manner which we will discuss further
below. For a higher value of λ1 (figures 2c and 2d), the depth and leakage flux at x = 1
are very much greater. In x < 1, the current adjusts first to a ‘quasi-steady’ state in
which the flux is approximately constant in x but the depth is somewhat less than
that predicted by (3.2); this part of the current then adjusts slowly towards the final
steady state. Meanwhile, the leakage current spreads rapidly beyond x = 1, gradually
adjusting towards self-similar form as the depth deficiency 1/λ1 − h(1, t) becomes
small.

We will now investigate the intermediate asymptotics of the leakage current. We
seek an asymptotic description for t → ∞, in which the current behind the fracture
(0 < x < 1) is steady at leading order, while the current beyond the fracture (x > 0)
spreads at leading order according to a self-similar solution. We first note that this
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Figure 2. Numerical results for a single fracture: ‘snapshots’ of the current profile h(x, t).
In (a), (b) λ1 = 5 and snapshots are taken at t =50 to t =700, at intervals of 50; in (c),
(d) λ1 = 0.5 and snapshots taken at t = 50 to t = 1000, at intervals of 50. The pairs (a, b) and
(c, d) each show the same data over different ranges. The dashed lines mark the steady-state
solution (3.2); the dotted lines mark the steady-state depth 1/λ1.

self-similar solution must have constant depth at its source, x = 1, and a consideration
of the scalings in (2.7) then requires that it lengthens as t1/2 and is fed by a flux which
decays as t−1/2. This motivates an asymptotic expansion in powers of t−1/2,

h(x, t) =

{
h01(x, t) for 0 <x < 1,

hl(ξ, t) for x > 1,
(3.4)

where ξ = (x − 1)t−1/2, and where we define

h01(x, t) =h0(x) +
1

t1/2
h1(x) +

1

t
h2(x) +

1

t3/2
h3(x) + O

(
1

t2

)
(3.5)

for h0(x) = (2 + 1/λ2
1 − 2x)1/2, and

hl(ξ, t) = H0(ξ ) +
1

t1/2
H1(ξ ) +

1

t
H2(ξ ) + O

(
1

t3/2

)
. (3.6)

The boundary conditions are, as before, the flux condition at x = 0, the continuity
of depth and the jump condition in flux at x = 1, and the condition that flux vanishes
at the front of the current x = xf (t). Following the numerical results (figure 2), we
assume that this last condition will be met by setting h = 0 and h∂h/∂x = 0 at xf (t),
as in previously published solutions for gravity currents in porous media.

Appendix B describes how the first few terms in these asymptotic expansions may
be obtained: we omit the details here for clarity. (The key to the analysis is that the
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lines) or the steady state (3.2) in x < 1 and h = 10−7 in x > 1 (dashed lines). Dotted lines

represent the asymptotic solution 1/λ1 − h(1, t) ∼ 0.444λ
−5/2
1 t−1/2.

flux in 0 <x < 1 is constant up to and including O(t−1), and so it adjusts much more
rapidly than the leakage current evolves: consequently, the depth at x = 1 adjusts
rapidly towards h = 1/λ1, and this depth sets the dynamics of the leakage current,
which in turn controls the next-order corrections to the current in 0 <x < 1.) We find
that the front of the current advances as

xf (t) ≈ 1.616

λ
1/2
1

t1/2 − 0.999

λ2
1

+ O

(
1

t1/2

)
, (3.7)

while the depth at the fracture is given by

h(1, t) ≈ 1

λ1

− 0.444

λ
5/2
1

1

t1/2
+

1.60 × 10−4

λ4
1

1

t
+ O

(
1

t3/2

)
, (3.8)

and the flux of fluid reaching the fracture from the left is given by

q(1−, t) ≈ 1 − 0.222

λ
7/2
1

[(
2 +

1

λ2
1

)1/2

− 1

λ1

]
1

t3/2
+ O

(
1

t2

)
. (3.9)

3.3.1. Convergence to the asymptotic state

We may quantify how the flow converges to the asymptotic solution derived above
by examining the variation in time of the solution at x =1. The most informative
quantity to plot is the ‘depth deficiency’ 1/λ1 − h(1, t), which reveals two regimes of
behaviour (figures 3a and 3b).

For λ1 � 1 (figure 3a), convergence to the asymptotic solution is rapid, occurring
over a time scale of order 1 which does not depend strongly on λ1. Convergence in this
regime is driven by the adjustment of the current in 0 <x < 1, which to leading order
‘sees’ a boundary condition h(1) = 0 independently of λ, and adjusts over an O(1) time
scale to supply a flux q(1−, t) ≈ 1. This in turn allows the self-similar leakage current
to be established rapidly. (Although the value of λ1 is not important, the loss of fluid
at x = 1 is: the time taken for adjustment is rather greater than 1, while the time taken
for enough fluid to be injected to create the steady solution is given by t ≈ 0.94: we
see that because of the flux lost to the fracture, this is a considerable underestimate.)

For λ1 � 1 (figure 3b), the convergence to the similarity solution is much slower,
and the time required increases rapidly as λ1 falls. This variation with λ1 is consistent
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Figure 4. (a) The flux q12 between the two fractures: contours are at 0.01 (uppermost) and
0.1 to 0.8 in increments of 0.1. (b) The scaled depth at the second fracture, λ1h(x2): contours
are at 10−4 (leftmost), 10−3, 10−2 and 0.1 to 0.9 in increments of 0.1.

with the structure of the asymptotic expansion (3.8) for h(1, t), in which the expansion
variable is effectively λ

3/2
1 t1/2, so critical time scales will vary roughly with λ−3

1 . These
results support the asymptotic expansion as a description of the long-time evolution
of the current.

4. Two or more fractures
The steady-state and self-similar solutions obtained above give a reasonably

complete description of what occurs when the current meets a single isolated fracture.
In this section, we will consider what happens when it encounters two or more.

4.1. Steady states for two fractures

We first consider the situation where there is a second sink, of strength λ2, at x2 > 1.
Ignoring all questions of stability for the moment, there is clearly one steady solution,
derived above, in which the current reaches only to x = 1 and all drains through the
first sink.

There is also a second solution in which the current reaches x2 and drains partly
through each sink. This is given by

h(x) =

{
h01 = (A01 − 2x)1/2 in 0 � x � 1,

h12 = (A12 − 2q12x)1/2 in 1 � x � x2.
(4.1)

By matching depths and fluxes at x = 1 and imposing the flux condition at x = x2, we
obtain the unique physically relevant solution

A01 = 2 +
(1 − q12)

2

λ2
1

A12 =
q12

(
2x2λ

2
2 + q12

)
λ2

2

, q12 =
1 + δ −

√
δ2 + 2δ + 	2

1 − 	2
,

(4.2)
where for convenience we have defined 	 = λ1/λ2 and δ = λ2

1(x2 − 1).
Figure 4(a) shows the variation of the flux q12 with the fracture strength ratio 	

and the scaled separation distance δ. As either the separation increases or the relative
strength of the second fracture decreases, q12 decreases rapidly. In particular, we note
that the second fracture can only consume more than half the current (i.e. q12 > 1/2)
when δ < (1 − 	2)/4; thus the majority of the fluid will always go down the first
fracture if either 	 � 1 (i.e. λ1 � λ2) or δ � 1/4 (i.e. 4(x2 − 1) � λ−2

1 ). We also note
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that it is only for very small 	 and δ that the condition λ1h(x1) 	 1 is satisfied, so
outside this regime the point sink model remains valid (cf. § 2.1).

Figure 4(b) illustrates the depth of the current at the second fracture, h(x2), which
controls the flux into the leakage current. It is convenient to plot λ1h(x2) (in other
words the ratio of the downstream depth with two fractures to that with a single
fracture), since we can write this as a function of 	 and δ only, λ1h(x2) = 	q12.
This rescaled downstream depth increases with increasing 	, as the second fracture
becomes weaker (so although less fluid is drawn beyond the first fracture, the depth
at x2 must increase to drive fluid through the second fracture, and it is this second
effect which dominates). However, as the separation δ is increased, the reduction in
q12 drives a corresponding reduction in h(x2). We note that the downstream depth is
always reduced by adding a second fracture, and that across most of parameter space
this decrease is quite substantial. This suggests that multiple fractures may be quite
effective in trapping a current: we will return to this point below.

4.2. Multiple fractures and continuously permeable regions of finite length

Before considering the case of multiple fractures, it is helpful to consider a natural
complement to the discrete-fracture problem. This occurs when the substrate is every-
where impermeable except for a region of finite length in which it is slightly permeable,
so that fluid drains though it according to the ‘slow drainage’ model of PWH01. In
this section we will recapitulate the results of PWH01 which are relevant to this
situation; we will then discuss how it can be described as the limit of an array of
discrete fractures.

We let the permeable region extend from x = 0 to x = L, with input flux q at x = 0,
and the steady draining flow be described, following PWH01, by

d

dx

(
h

dh

dx

)
= λh. (4.3)

We can rescale by defining x ′ = x/L, h′ = h/(Lq)1/2 and λ′ = λL3/2/q1/2 to obtain

d

dx ′

(
h′ dh′

dx ′

)
= λ′h′ in 0 <x ′ < 1, with h′ dh′

dx ′ = −1 at x ′ = 0. (4.4)

There are now two possible ways to achieve a steady state. One is for the current
to drain out completely within the permeable region: for this to occur and for the
solution to be stable, we must then have solutions for which h′ = 0 at some finite
x ′ < 1. Such a solution was derived by PWH01, and has the form

h′(x ′) =
λ′

6

(
181/3

λ′2/3
− x ′

)2

in 0 <x ′ <
181/3

λ′2/3 . (4.5)

This solution can be realized in the finite fracture x ′ < 1 if λ′ > 181/2 ≈ 4.24. For lower
values of λ′, it is not possible for the current to drain away completely, and we must
seek a different class of solutions. These have the same form as the ‘leakage currents’
found for the discrete-fracture problem: within the permeable region, the current
adjusts to a quasi-steady state in which at leading order in t the flux vanishes at the
end of the fracture (x ′ = 1), but there is a slight depth-deficiency at x ′ = 1 which feeds
a leakage current with a gradually decaying flux of fluid.

Continuity of flux requires the leading-order solution in the permeable region to
satisfy h′dh′/dx ′ = 0 at x ′ =1, and since for λ′ < 181/2 we cannot satisfy this by setting
h′(1) = 0, we must instead set dh′/dx ′ =0 there. The resulting boundary value problem
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is easy to solve numerically: it turns out that solutions are available precisely when
λ′ < 181/2, so this class of solutions complements those described by (4.5).

Figure 5(a) illustrates the variation of the depth h′(1) of the current at the
downstream end of the permeable region. For small λ′, the depth varies as 1/λ′,
so as the drainage rate becomes small the finite length of the permeable region
becomes irrelevant, and we approach the solution for a discrete fracture. Figure 5(b)
shows the profiles h′(x ′) of the current for a range of λ′: as λ′ reduces, the profile
becomes increasingly flat, so as λ′ → 0 the drop in h′ across the permeable region
reduces towards zero.

The asymptotic description of the leakage current must be the same as that given
in § B.2, with the difference that the depth is now set by H0(0) = (Lq)1/2h′(1; λ′) instead
of simply by H0(0) = 1/λ1. (In the limit of slow drainage, when h′(1; λ′) = 1/λ′, we
have H0(0) = q/(λL): as we might expect, this agrees with the discrete-fracture model
for q = 1 if we take λ1 = λL.)

4.2.1. The continuously permeable region as the limit of many discrete fractures

It is natural to expect that a large array of discrete fractures will be similar in
effect to a continuously permeable region covering the same area. The simplest case is
when we consider a sequence of evenly spaced fractures of equal strength. We let the
fractures be positioned at x ′

i = i/N for i =1, . . . , N and have strength λi = λ/N . In
the region x ′

i−1 � x ′ � x ′
i , following (3.1) we let h(x ′) = (Ai−2qi(x

′−x ′
i−1))

1/2: matching
depths and fluxes at each fracture yields(

Ai − 2qi

N

)1/2

= A
1/2
i+1 and qi − λ

N
A

1/2
i+1 = qi+1 for i = 1, . . . , N = 1. (4.6)

We also have the boundary conditions q1 = 1 and

qN =
λ

N

(
AN − 2qN

N

)1/2

, i.e. qN = − λ2

N3
+

λ2

N3

(
1 +

N4AN

λ2

)1/2

. (4.7)

It is simplest to write this system in a form which allows us to solve ‘backwards’
starting from AN : we can then obtain a single equation for AN such that q1 = 1. We
obtain the difference equations

qi =
λ

N
A

1/2
i+1 + qi+1 and Ai =

2

N

(
λ

N
A

1/2
i+1 + qi+1

)
+ Ai+1. (4.8)
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Figure 6. Steady solutions for flow over a permeable region: (a) the solution h′(x ′) for λ′ = 1
(dashed) compared with the corresponding solutions for 12, 8, 5, 3, 2, and 1 discrete fractures;
(b) the solution h′(x ′) for λ′ = 10 (dashed) compared with the corresponding solutions for 12,
8, 5, 3, 2, and 1 discrete fractures.

We cannot solve this set of difference equations in closed form, but we can show
that solutions must exist: we have q1 � A2−N

N (which is an increasing and unbounded
function of AN for any finite N); furthermore, when AN = 0, qi = 0 for all i < N . We
deduce that for any finite N and any value of λ there must always be a solution for
AN such that the condition q1 = 1 is satisfied.

Some typical profiles are shown in figure 6. As N increases, the difference
equations (4.8) model the differential equation (4.4) increasingly closely, and the
steady-state profiles given piecewise by (3.1) collapse onto the profiles for continuous
permeability plotted in figure 5. We note that this collapse occurs both for λ′ < 181/2

(figure 6a), when the continuous solution has finite depth at x ′ = 1, and for λ′ > 181/2

(figure 6b), when the continuous solution vanishes before x ′ =1. In the latter case,
the depth of the piecewise solutions decreases rapidly with increasing N in the region
beyond the front of the continuous current, but they never entirely vanish.

The piecewise solutions converge fairly rapidly to the continuous solution as N

increases. We note that as N increases the depth at x ′ = 1 decreases, reaching its
minimum in the continuum limit. Recalling that the leakage flux increases with in-
creasing depth at the downstream end of the fracture, we conclude that a continuously
permeable region is more effective at trapping an oncoming current than are the
corresponding set of discrete fractures. This trend is stronger for higher values of λ′

(recall that as λ′ → 0, the values of h′(1) predicted by the continuum model and by
the single-fracture model are both given asymptotically by 1/λ′).

4.3. Numerical results for time-dependent flow

We have carried out a series of numerical integrations to confirm the accuracy of
the picture obtained above. Figure 7 shows the results of a series of numerical
integrations comparing the system with continuous drainage with an ‘equivalent’ set
of discrete fractures. In each case, the region of continuous drainage was taken to lie
between x = 1 and x = 2, and the discrete fractures were located at xi = 1 + i/N for
i = 1, . . . , N .

Figures 7(a) and 7(c) show a case, λ=1, in which the continuously permeable region
is unable to trap the current. The downstream depth h(2) in the steady state is quite
large, and so a large leakage current is supplied, while the current in the region x < 2
has adjusted to almost its final steady state by the time the first plotted ‘snapshot’ is
taken. There is only a very small difference between the continuous-drainage current
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Figure 7. Numerical results for multiple fractures or continuously permeable regions. (a)
Profiles for λ= 1: snapshots at t = 20 to t = 200 at intervals of 20. (b) Profiles for λ= 10:
snapshots at t = 0 to t = 5 at intervals of 0.2. (c) Profiles for λ= 1 and N = 3: snapshots at
t = 20 to t = 200 at intervals of 20; inset compares profiles at t = 200 for discrete-fracture case
(solid) and continuously draining case (dashed). (d) Profiles for λ= 10 and N = 3: main panel
shows snapshots at t = 0 to t = 5 at intervals of 0.2; inset shows snapshots at t = 0 to t = 50 at
intervals of 5.

(figure 7a) and the current with three discrete fractures (figure 7c): the latter is slightly
deeper, as the inset in figure 7(c) indicates, and the leakage current is correspondingly
slightly larger. Comparison with figure 6 indicates that by t = 200 the solutions in
1 <x < 2 are extremely close to their final quasi-steady state.

Figures 7(b) and 7(d) show a case, λ=10, in which the continuously permeable
region is able to trap the current. Figure 7(b) therefore shows no leakage current, in
contrast to the case of three discrete fractures (figure 7d), where there is a (very small)
leakage current beyond x = 2. Again, comparison with figure 6 indicates that by t = 5
the solutions in 1< x < 2 have become extremely close to their final quasi-steady
state, and that the quasi-steady current with discrete fractures is slightly deeper than
that with continuous drainage.

In summary, these numerical integrations of the time-dependent model confirm
that the steady-state and leakage current analysis captures the behaviour of the flow
across multiple fractures.

5. Discussion and conclusions
We have presented a number of exact, asymptotic and numerical solutions which

describe the spreading of constantly fed gravity currents in a porous medium, when
the otherwise impermeable substrate along which they flow is punctuated either by
one or more short but highly permeable fractures or by a continuous region of low
but non-zero permeability. A key question is whether such fractures can ‘trap’ a
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current entirely, or whether some fluid is able to pass beyond them. We find that a
continuously permeable region is able to trap the current completely when the rescaled
drainage parameter λ′ = λL3/2/q1/2 is greater than 181/2. In all other circumstances,
both for discrete and continuous sinks, the model admits steady solutions in which the
current is completely trapped, but these solutions are not stable. Rather, they describe
a quasi-steady state towards which the current adjusts asymptotically; however, a
small flux of fluid is able to bypass the fractured region in each case. This flux
diminishes asymptotically as t−1/2, and the leakage current which it feeds lengthens
asymptotically as t1/2. The coefficient in this spreading law depends on the depth of
the steady-state solution at the downstream end of the fracture, so the quasi-steady
balance between supply and drainage acts as a ‘hydrostatic control’ which determines
the properties of the leakage current. These asymptotic descriptions are of most
use when the current is ‘nearly trapped’, so that the drainage flux is indeed small.
Numerical integrations of the model for single and multiple fractures and for a
continuously permeable region confirm the picture built up analytically.

These drainage-affected gravity currents have some interesting features. One is the
emergence of a current which spreads as t1/2 rather than the more familiar t2/3 of a
constant-flux current or t1/3 of a constant-volume current (Huppert & Woods 1995).
Another notable feature is that although the steady-state solutions are unstable, they
provide a good description of the current at long times everywhere except the region
beyond the last fracture; this thus enables estimates to be made easily of the eventual
drainage pattern of the current. A final feature which should be pointed out is the
rapid convergence as N increases of the multiple-fracture solutions to the continuous-
drainage solution in both regimes λ′ � 181/2: this supports the earlier modelling work
of PWH01 as a simple and tractable description of drainage through a multiply
fractured substrate.

These results suggest that in practical situations (for example the management of
aquifer recharge or pollutant sequestration schemes), it may be possible to deduce the
principal features of the horizontal and vertical spreading of injected fluid by carrying
out steady-state, rather than fully time-dependent, calculations, with consequent
savings in computational resources. Meanwhile, they suggest that the complete
trapping of a current by fractures may be difficult to achieve, especially if there is a
small number of relatively large fractures rather than an array of many small fractures.
In these circumstances, monitoring for leakage currents beyond the fractured region
may be necessary even if the fractured region is large enough, in principle, to swallow
the current entirely.

A particularly interesting possibility occurs if we consider the injection of fluid
into a laterally unconfined porous layer where there is a localized fractured region of
substrate close to the point of injection. (For example, we might consider injection
into an aquifer where a new injection well is sunk near to an abandoned production
well: this problem is similar to those considered by Nordbotten et al. (2004), with
the difference that we do not assume that the fluid occupies the whole depth of the
horizontal layer.) In this case, in contrast to the present study, the flow is essentially
two-dimensional. If drainage through the fracture is neglected, we may expect the
injectate to spread radially, with radius r̂ ∝ (β̂q̂)1/4 t̂1/2 and maximum depth ĥ ∝
(q̂/β̂)1/2 independent of t̂ at the point of injection (Lyle et al. 2005; Bickle et al. 2007).
Extending the principle of our one-dimensional results to this situation, we might
expect that the depth near the point of injection and the fracture will in fact be con-
trolled hydrostatically by a leading-order balance between injection and drainage,
while the current spreads at large distances according to a similarity solution with fixed
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depth at the source (so radius increases as t1/2, though with a different coefficient to
that found for the constant-flux current without leakage). Thus the spreading current,
imaged in a horizontal plane, might appear on first inspection to be spreading across
an impermeable substrate when in reality it is leaking into regions above (in the
case of buoyant fluid) or below. This illustrates a potential difficulty in interpreting
observations of the spreading of injectates in fractured or otherwise heterogeneous
porous media.

I would like to thank Professor Andy Woods for helpful and encouraging discussions
on this work, and also three anonymous referees for their useful comments. Much
of this work was carried out at the BP Institute for Multiphase Flow, University
of Cambridge, and supported financially by a postdoctoral fellowship under the
NERC/EPSRC EMS scheme (ref. NE/B50188X/1).

Appendix A. Numerical method
The nonlinear diffusion equation (2.7) was integrated numerically using an implicit

time- and space-centred differencing scheme, following Press et al. (1992, § 19.2).
Spatially one-sided estimates were used for the derivatives close to the sinks x = xi

for accuracy where ∂h/∂x is expected to be discontinuous, along with a higher-order
volume estimate for h at this point. Combining these difference equations and the
corresponding equations for the trivial boundary conditions at the ends of the domain
gives a tridiagonal system to solve at each time step; this was done using the tridag
routine of Press et al. (1992).

The scheme was implemented in Fortran 77. The typical grid resolution was
�x =0.005 to 0.1 and �t = 0.0005 to 0.05. All the results presented were robust to
changes in resolution, and typical run-times on a 400 MHz Unix workstation were of
the order of tens of seconds to tens of minutes.

Appendix B. Details of the asymptotic analysis for a single fracture
B.1. Adjustment of the current behind the fracture

We first consider the region 0 < x < 1. The solution must obey equation (2.7), subject
to the condition h∂h/∂x = −1 at x = 0 and to the flux and depth matching conditions
at x = 1. Substituting the expansion (3.5) into (2.7), we find

−h1(x)

2t3/2
− h2(x)

t2
− 3h3(x)

2t5/2
=

1

2

∂2

∂x2

[(
h0(x) +

h1(x)

t1/2
+

h2(x)

t
+

h3(x)

t3/2

)2
]

+ O

(
1

t2

)
.

(B 1)

Since the right-hand side of this equation is simply the x-derivative of the fluid flux,
this flux must be constant along the current up to order t−3/2: hence the flux which
reaches x = 1 adjusts to its quasi-steady value of q = 1 over a shorter time scale than
that over which the leakage current spreads.

Carrying out the expansion and equating powers of t , we obtain a succession of
equations and boundary conditions. The first two may be integrated immediately to
give

h1(x) =
A1

h0(x)
and h2(x) =

A2

2h0(x)
− A2

1

2h3
0(x)

, (B 2)
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where A1 and A2 are constants to be determined by the boundary condition at x =1
(and thus by the dynamics of the leakage current). At the next order in t , we obtain

d2

dx2
[h0(x)h3(x) + h1(x)h2(x)] = −1

2
h1 with

d

dx
[h0(x)h3(x) + h1(x)h2(x)]

∣∣∣∣
x=0

= 0,

(B 3)
and it is straightforward to integrate this to obtain

h3(x) = −A1

6
h2

0(x) +
A1

4

(
2 +

1

λ2
1

)1/2

h0(x) +
A3

h0(x)
− A1A2

2h3
0(x)

+
A3

1

2h5
0(x)

, (B 4)

where A3 is another constant of integration.
At the upstream side of the fracture, where x = 1 and h0 = 1/λ1, the conditions are

h(1−, t) =
1

λ1

+A1λ1

1

t1/2
+

(
A2λ1

2
− A2

1λ
3
1

2

)
1

t

+

[
− A1

6λ2
1

+
A1

4λ1

(
2 +

1

λ2
1

)1/2

+ A3λ1 − A1A2λ
3
1

2
+

A3
1λ

5
1

2

]
1

t3/2
+ O

(
1

t2

)
(B 5)

and

q(1−, t) = 1 − A1

2

[(
2 +

1

λ2
1

)1/2

− 1

λ1

]
1

t3/2
+ O

(
1

t2

)
. (B 6)

We will write these as, respectively,

h(1−, t) =
1

λ1

+
B1

t1/2
+

B2

t
+ . . . and q(1−, t) = 1 − Q3

t3/2
+ . . . (B 7)

B.2. Behaviour of the leakage current

We now consider the region x > 1. Substituting (3.6) into (2.7) and expanding, we
obtain the governing equations for the leading-order and first correction terms,

−1

2
ξ
dH0

dξ
=

d

dξ

(
H0

dH0

dξ

)
and −1

2

d

dξ
(ξH1) =

d2

dξ 2
(H1H0) . (B 8a, b)

Expanding the conditions for the continuity of depth and flux across the fracture, we
obtain the corresponding boundary conditions,

H0(0) =
1

λ1

, λ1B1 = H0

dH0

dξ

∣∣∣∣
0

; H1(0) = B1, λ1B2 =
d(H0H1)

dξ

∣∣∣∣
0

. (B 9a, b)

To expand the boundary conditions at the nose, we define ξf = xf (t)/t1/2, and
expand this as ξf = ξf 0 + ξf 1t

−1/2 + O(t−1). The condition H (xf , t) = 0 then gives at
O(1) and at O(t−1/2) the conditions

H0(ξf 0) = 0 and H ′
0(xf 0)ξf 1 + H1(ξf 0) = 0. (B 10a, b)

To impose the flux condition limx→xf
H∂H/∂x = 0, we define Z = 1 − (x − 1)/xf (t),

and postulate an expansion of the form h(Z, t) = η(t)Z+O(Z2) for small Z; we obtain
the condition that

η(t) = xf (t)
dxf

dt
, i.e. − 1

t1/2

∂H

∂ξ

∣∣∣∣
ξf

=
dxf

dt
. (B 11)
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Expanding this in powers of t−1/2, the first two equations we obtain are

dH0

dζ

∣∣∣∣
ξf 0

= − 1

2
ξf 0 and

[
dH1

dξ
+ ξf 1

d2H0

dξ 2

]
ξf 0

= 0. (B 12a, b)

We now have fully specified eigenvalue problems to solve for the functions Hi(ξ ) and
the coefficients Bi and ξf i . We will consider only the first two terms in the expansion,
as this is sufficient to confirm this solution is consistent with that established in
0 <x < 1.

The leading-order problem is defined by equation (B 8a) together with the boundary
conditions (B 9a), (B 9b), (B 10a) and (B 12a). Here B1 and ξf 0 are solution parameters:
we have a second-order system with four boundary conditions, which should be
sufficient to determine them both.

For simplicity, we write the input flux as −λ1B1 = Q. It is useful to eliminate Q

by defining ξ = Q1/3χ , ξf 0 =Q1/3χ0 and H0 = Q2/3Θ(χ), and then to introduce the
variable ζ = 1 − χ/χ0 to obtain

1

2
(1 − ζ )

dΘ

dζ
=

1

χ2
0

d

dζ

(
Θ

dΘ

dζ

)
(B 13)

with the boundary conditions

Θ(0) = 0 and
dΘ

dζ

∣∣∣∣
0

=
1

2
χ2

0 ; Θ(1) =
1

Q2/3λ1

and Θ
dΘ

dχ

∣∣∣∣
1

=χ0. (B 14)

We now have a well-characterized shooting problem to solve, integrating from ζ = 0
and varying χ0 until the condition on dΘ/dχ is satisfied at ζ = 1. This may be done
readily using Maple: we find that χ0 ≈ 2.119, and that Θ =Θ0 ≈ 1.719 and dΘ/dζ =
Θ1 ≈ 1.233 at ζ = 1. The last of our boundary conditions now determines the unknown
Q: we find

Θ0 =
1

Q2/3λ1

, i.e Q =
1

(λ1Θ0)3/2
. (B 15)

In terms of our unknowns B1 and A1, this may be written as

B1 = −Q

λ1

= − 1

λ
5/2
1 Θ

3/2
0

, i.e. A1 = − 1

λ
7/2
1 Θ

3/2
0

. (B 16)

We have now obtained the complete leading-order description of the current, in which
it is steady behind the fracture and has a self-similar leakage current in front of the
fracture. As λ1 increases, so the fracture becomes more strongly draining, the depth
at the fracture adjusts more rapidly towards its steady value, while the flux supplying
the leakage current decreases in strength. The similarity solution, H0(ξ ), is plotted in
figure 1(b), alongside the solution for constant flux, figure 1(a); it is also interesting
to compare the numerically obtained leakage currents in figures 2(b) and 2(d).

The next-order term, H1(ξ ), must satisfy equation (B 8b) with the boundary
conditions (B 9d), (B 10b), (B 12b) and, from (B 9c), H1(0) = −λ

−5/2
1 Θ

−3/2
0 . We can

simplify these somewhat. First, we note that by expanding equation (B 13)
around ζ = 0, we can obtain d2Θ/dζ 2 = −χ2

0 /8 and so d2H0/dξ 2 = −1/8 at ζ =0.
The boundary conditions at ξf 0 therefore simplify to H1(ξf 0) = ξf 0ξf 1/2 and
H ′

1(ξf 0) = ξf 1/8. We can also expand the condition (B 9d) to obtain

Q2/3Θ0

dH1

dξ
+ H1

[
−Q1/3

Θ0

]
= λ1B2. (B 17)
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We rescale the equations, as before, by defining H0 = Q2/3Θ , H1 = Q2/3Θ1, ξ = Q1/3χ ,
ξf 1 = Q1/3χ1, and finally ζ =1−χ/χ0; and we eliminate χ1 from the shooting problem
by defining Θ1(ζ ) = χ1β(ζ ). We obtain

1

2

d

dζ
[(1 − ζ )β] =

1

χ2
0

d2

dζ 2
[Θβ] (B 18)

with

β =
1

2
χ0 and

dβ

dζ
= −1

8
χ0 at ζ =0;

β = − 1

χ1λ
3/2
1 Θ

1/2
0

and
dβ

dζ
=

χ0

χ1λ
3/2
1 Θ

5/2
0

− B2λ
5/2
1 χ0Θ

1/2
0

χ1

at ζ = 1. (B 19)

Integrating the equation numerically to find β(ζ ), and using the value of χ0 obtained
above, we obtain β = β0 ≈ 0.5823 and dβ/dζ = β1 ≈ −0.4175 at ζ =1. Thus we have
Θ1 =β0χ1 and Θ ′

1 = β1χ1 at ζ =1, and we can use the boundary conditions at ζ =1
to write

χ1 = − 1

λ
3/2
1 Θ

1/2
0 β0

and B2 =
β1

λ4
1χ0Θ0β0

+
1

λ4
1Θ

3
0

. (B 20)
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